

Flávio de Andrade Silva

Tenacidade de materiais compósitos não convencionais

Dissertação de Mestrado

Dissertação apresentada ao programa de Pós-Graduação em Engenharia Civil da PUC-Rio como requisito parcial para obtenção do título de Mestre em Engeharia Civil.

> Orientador: Khosrow Ghavami Co-Orientador: José Roberto Moraes d'Almeida

Rio de Janeiro Junho de 2004.

Pontifícia Universidade Católica do Rio de Janeiro

Flávio de Andrade Silva

Tenacidade de materiais compósitos

não convencionais

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada

Prof. Khosrow Ghavami

Orientador Departamento de Engenharia Civil - PUC-Rio

Prof. José Roberto Moraes d'Almeida

Co-Orientador Departamento de Ciência dos Materiais e Metalurgia - PUC-Rio

Prof. João Luis Pascal Roehl

Departamento de Engenharia Civil - PUC-Rio

Prof. Celso Romanel Departamento de Engenharia Civil – PUC-Rio

Prof. Clelio Thaumaturgo

Departamento de Engenharia Mecânica e de Materiais - IME

Prof. Felipe José da Silva Departamento de Engenharia Mecânica e de Materiais – IME

Prof. José Eugênio Leal

Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 30 de Junho de 2004.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Flávio de Andrade Silva

Graduou-se em Engenharia Civil pela PUC-Rio – Pontificia Universidade Católica do Rio de Janeiro em 2001. Em 2002 começou sua jornada no mestrado, onde em conjunto com o Professor K. Ghavami vem escrevendo artigos e participando de congressos na área de materiais não convencionais. Foi presidente e fundador da "Brazilian Student Association at Florida Tech" no período de Novembro de 1996 até Dezembro de 1997.

Ficha Catalográfica

Silva, Flávio de Andrade

Tenacidade de materiais compósitos não convencionais / Flávio de Andrade Silva; orientador: Khosrow Ghavami; co-orientador: José Roberto Moraes d'Almeida - Rio de Janeiro: PUC, Departamento de Engenharia Civil, 2004.

234 f. : il. ; 29,7 cm

Dissertação (mestrado) - Pontifícia Universidade católica do rio de Janeiro, Departamento de engenharia Civil.

Incluí referências bibliográficas.

1. Engenharia Civil - Teses, 2. Bambu, 3. Fibras naturais, 4. Impacto Charpy, 5. Impacto balístico, 6. Laminados, 7. Materiais compósitos, 8. Matriz cimentícia, 9. Propriedades térmicas, 10. Tenacidade. I.Ghavami, Khosrow. II.d'Almeida, José Roberto Moraes. III.Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV.Título.

CDD: 624

Agradecimentos

Vários fatores são primordiais para o sucesso de um trabalho experimental. Um deles é a ajuda e boa vontade de técnicos, professores e pesquisadores da instituição de ensino do pesquisador e de outras instituições que possam vir a colaborar através da disponibilidade de seus laboratórios. Em um país em desenvolvimento como o Brasil no qual os laboratórios são escassos e não tão bem equipados como os de países desenvolvidos, esses fatores se tornam ainda mais críticos e cruciais para o bom desenvolvimento de uma pesquisa. Eu gostaria de expressar meus sinceros agradecimentos a todas as pessoas que assistiram em meus esforços na obtenção do titulo de Mestre em Ciências da Engenharia Civil na PUC-Rio.

Devo e tenho a obrigação de agradecer em particular as seguintes pessoas e instituições:

Ao IMA/UFRJ (Instituto de Macromoléculas) e ao aluno de doutorado dessa instituição, Maurício Almeida, por ter possibilitado e auxiliado na utilização do equipamento de ensaio de impacto Charpy.

Ao LTTC (Laboratório de Tecnologia e Transmissão de Calor) do departamento de Engenharia Mecânica da UFRJ, ao Professor Paulo Couto e aos técnicos que auxiliaram e tornaram possível a determinação da condutividade térmica nos compósitos.

Aos Capitães Egbert e Queirós por permitir e assessorar nos ensaios de impacto balístico realizados no campo de provas do Exército localizado na Restinga de Marambaia.

À Otto Baumgart pelo fornecimento do adesivo epóxi.

À Fabrica de Celulose e Papel Itapagé do Maranhão pelo fornecimento da polpa de Bambu.

Ao professor Felipe José da Silva do IME pelo fornecimento da wollastonita.

Ao Raphael Vasconcellos pela importante ajuda na fabricação dos laminados de bambu.

Ao aluno de iniciação cientifica Mário Nascimento pela grande ajuda na confecção dos corpos-de-prova.

Aos técnicos do ITUC da PUC-Rio pelo auxílio nos ensaios de flexão.

Aos técnicos do LEM-Dec da PUC-Rio pelo auxílio na fabricação dos corposde- prova.

Aos técnicos da Metalografia da PUC-Rio.

As bibliotecárias da PUC-Rio pelo auxílio na procura de artigos não disponíveis nos bancos de dados da PUC.

Ao Professor e Co-Orientador José Roberto Moraes d'Almeida pela inestimável ajuda no decorrer deste trabalho. Devo agradecer a ele pelo tempo que investiu nesta pesquisa e pela sua sinceridade, honestidade e disponibilidade.

Ao Professor e Orientador Khosrow Ghavami pela possibilidade de desenvolver esta pesquisa. Gostaria de agradecer pela sua confiança em minha pessoa a qual refletiu em sua flexibilidade, deixando que eu decidisse o melhor caminho a seguir nesta pesquisa.

Ao Professor Sidnei Paciornik pela ajuda na determinação do comprimento das fibras através de processamento digital de imagens.

Aos colegas da PUC-Rio Ângela Sales e Conrado Rodrigues pelas trocas de idéias e informações de suma importância.

Ao CNPq pela bolsa de Mestrado.

Resumo

Silva, Flávio de Andrade; Ghavami, Khosrow; d'Almeida, José Roberto Moraes. **Tenacidade de materiais compósitos não convencionais.** Rio de Janeiro, 2004. 234 p. Dissertação de Mestrado - Departamento de Engenharia Civil, Pontificia Universidade Católica do Rio de Janeiro.

O objetivo deste trabalho foi avaliar as propriedades mecânicas, físicas e microestruturais de materiais compósitos cimentícios reforçados por fibras naturais e de laminados de bambu. O trabalho experimental foi direcionado para a determinação da tenacidade. Para se determinar a tenacidade foram utilizados três tipos de ensaios: impacto Charpy, impacto balístico e flexão em 3 pontos. Após os ensaios, a superfície de fratura dos corpos-de-prova foi analisada por microscopia eletrônica de varredura (MEV). Esta análise microestrutural serviu para determinar os modos de fratura e validar as hipóteses feitas nos modelos matemáticos utilizados. Foram usados modelos adaptados da literatura para a determinação da tenacidade e os valores teóricos obtidos foram confrontados com os experimentais. Determinou-se também através de modelos encontrados na literatura a tensão interfacial de todas as fibras utilizadas nesta pesquisa. Os modelos empregados para calcular a tenacidade e a tensão de adesão interfacial, se mostraram eficientes e válidos. Em segundo plano, porém não menos importante, ficou a determinação das propriedades térmicas dos materiais utilizados. Foram efetuados ensaios de condutividade térmica do compósito e ensaios termogravimétricos das fibras vegetais e do bambu.

Os compósitos cimentícios foram reforçados por diferentes fibras naturais: polpa refinada de bambu (CPB), polpa de sisal (CPS), polpa de eucalipto (CPE), fibras curtas de sisal (CPFS) e wollastonita (CPW). As proporções das polpas de bambu, sisal e eucalipto utilizadas como reforço nas matrizes cimentícias foram de 8% e 14% em relação à massa do cimento, a da fibra curta de sisal (25 mm) foi de 3 % em relação ao volume e a da wollastonita foi de 11,5 % em relação à massa. Compóstios híbridos feitos com wollastonita e polpa de bambu (CPBW) foram também produzidos apenas variando a proporção da polpa de bambu em 8% e 14% e mantendo fixa a da wollastonita em 11,5 %. Como uma tentativa de se melhorar a resistência ao impacto, laminados CPB/AL foram também

fabricados colando duas chapas de alumínio (liga 5052 H34) de espessura 0,8 mm em ambas às faces dos compósitos reforçados por fibra de bambu, formando assim compósitos sanduíche (CPBA).

O bambu Moso (*Phyllostachys heterocycla pubescens*) com 5 anos de idade foi usado para fabricação dos laminados de bambu, sendo tratado com água fervida para a prevenção de ataques biológicos. Técnicas para a extração do laminado a partir de seu formato natural foram estudadas estabelecendo suas vantagens e desvantagens. Para o ensaio de impacto foram utilizados corpos-de-prova com dimensão nominal de 120 mm x 15 mm x 6 mm perfazendo um total de 18 corpos-de-prova. Para o de flexão foram realizados ensaios com uma lâmina simples de bambu (BL) e bambu laminado colado (BLC) com 3 camadas de lâminas dispostas ortogonalmente. Os resultados dos testes de impacto Charpy e flexão em 3 pontos comprovaram a boa tenacidade do bambu laminado quando submetido a cargas de impacto (42,54 kJ/m²) e a cargas estáticas (19,77 kJ/m² para o laminado e 17.63 kJ/m² para o laminado colado). Compósitos sanduíche constituídos de alumínio e laminados de bambu foram também fabricados. Estes foram analisados através de ensaios de impacto balísticos seguindo as recomendações da norma NIJ 0101.04. Observações no microscópico eletrônico de varredura foram realizadas para se analisar os mecanismos de falha dos laminados.

Palavras-chave

Bambu, Fibras naturais, Impacto Charpy, Impacto balístico, Laminados, Materiais compósitos, Matriz cimentícia, Propriedades térmicas, Tenacidade.

Abstract

Silva, Flávio de Andrade; Khosrow, Ghavami; d'Almeida, José Roberto Moraes (Advisors). **Toughness of non conventional composite materials.** Rio de Janeiro, 2004. 234 p. M.Sc. Thesis – Civil Engineering Department, Pontifícia Universidade Católica do Rio de Janeiro.

The main objective of this work was to evaluate the mechanical, physical and microestructure properties of cementitious composite materials and bamboo laminates. The experimental program was focused on the determination of toughness. Three diferent types of tests were performed in order to establish it: Charpy impact, ballistic impact and three point bending test. After the tests, the fractured surface of the failed test specimens was observed using a Scanning Electron Microscope (SEM) to establish the failure mode. Mathematical models adapted from the available literature were used to determine the toughness from which the values were confronted to the ones obtained experimentally. It was also determined by mathematical models the interfacial bond stress of all fibers used in this research. The two models, used in the toughness and interfacial bond stress of all, but not less important, was the determination of the materials' thermal properties. Thermal conductivity tests of the composites and thermogravimetry of the fibers and bamboo were performed.

The cementitious composites were reinforced by different natural fibers: refined bamboo pulp (CPB), sisal pulp (CPS), eucalyptus pulp (CPE), short sisal fibers (CPFS) and wollastonite. The mass fraction of bamboo, sisal and eucalyptus pulp studied were 8% and 14%. For the wollastonite fiber the mass fraction studied was 11.5 % and for the short sisal fiber a 3% volume fraction was studied. Hybrid composites made with wollastonite and bamboo pulp (CPBW) were also produced varying the bamboo fraction mass to 8% and 14% but keeping constant to 11.5% the wollastonite mass fraction. The slurry de-watering process was used in the production of all composites described before. To reduce the adverse effects of weathering on the cellulose fibers and to improve the

impact load and flexural resistance of the composite, aluminum thin sheets were used to produce a sandwich composite lamina with the CPB, which was denominated as CPBA. Compound Adhesive gel from Otto Baumgart which is a type of epoxy was used to fix the aluminum sheets on the CPB. The use of aluminum has proved to give much higher impact resistance results when compared to the CPB ones.

The 5 years old Moso bamboo (Phyllostachys heterocycla pubescens), which was previously treated in boiled water to eliminate biological agents, was used to produce the bamboo laminates. Techniques were developed to extract bamboo laminates from its natural form, establishing its advantages and disadvantages. For the Charpy impact test, a total of 18 specimens with nominal dimensions of 120 mm x 15 mm x 6 mm were tested. Laminated (BL) and 3 layer cross ply laminated bamboo (BLC) were tested in bending. A total of 9 specimens were tested per bamboo configuration. The BL specimens had nominal dimensions of 120 mm x 30 mm x 6 mm and the BLC were 120 mm x 30 mm x 17 mm. The results demonstrated the good toughness of bamboo laminates when subject to dynamic (42.54 kJ/m²) and to static load (19.77 kJ/m² for the laminate and 17.63 kJ/m^2 for the cross ply laminate). Aluminum thin sheets were again used to make sandwich composites, but now using the bamboo laminate (BLCA). The BLCA was tested using the ballistic impact test following the standard NIJ 0101.04. Analysis on the Scanning Electron Microscope (SEM) were performed in order to establish the laminate's failure mechanisms.

Keywords

Ballistic impact, Bamboo, Charpy impact, Composite materials, Cementitious matrix, Natural fibers, Laminates, Thermal properties, Toughness.

Sumário

1 INTRODUÇÃO	26
1.1. Processamento	30
2 ΕΙΒΡΑς ΝΑΤΙ ΙΡΑΙς	31
	31
2.2. Fibra de hambu	32
	35
2.4 Wollastonita	37
2.5. Fibra de eucalinto	30
2.6. Fibra de juta	40
2.7 Fibra de coco	40
2.8. Fibra de banana	40
2.9 Matrizes cimentícias reforcadas por fibras naturais	43
2.9.1. Modelo para análise de compósitos reforcados por fibras	
descontínuas	44
2.10. O cimento amianto	56
2.10.1. Resistência ao impacto	58
2.10.2. Tecnologia de produção	58
2.10.3. Riscos à saúde	60
3 BAMBU	63
4 IMPACTO EM MATERIAIS COMPÓSITOS	70
4.1. Tipos de ensaio	71
4.1.1. Impacto de baixa velocidade	73
4.1.1.1. Charpy	73
4.1.1.2. Izod	74
4.1.1.3. Queda de peso	75
4.1.1.4. Máquinas hidráulicas	76
4.1.2. Impacto de alta velocidade	76

4.1.2.1. Barra Hopkinson	76
4.1.2.2. Impacto balístico	77
4.2. Normas de impacto	79
4.3. Leis de contato	80
4.4. Métodos para o cálculo da energia de impacto	81
4.5. Efeitos dinâmicos do impacto Charpy	85
5 PROCEDIMENTO EXPERIMENTAL	90
5.1. Produção dos compósitos	90
5.1.1. Processo Hatschek modificado	90
5.1.1.1. Compósitos sanduíche	93
5.1.2. Processo manual	95
5.1.3. Processo de laminação	97
5.1.3.1. Laminado colado e sanduíche bambu-alumínio	100
5.2. Testes mecânicos	101
5.2.1. Impacto Charpy	101
5.2.2. Flexão em 3 pontos	102
5.2.3. Impacto balístico	104
5.3. Dureza	106
5.4. Condutividade térmica	108
5.5. Termogravimetria (TGA)	111
5.6. Microscopia eletrônica de varredura (MEV)	112
5.7. Determinação dos índices físicos	113
5.8. Determinação do comprimento de fibra	114
6 ANÁLISE DOS RESULTADOS	115
6.1. Compósitos cimentícios reforçados por polpa de bambu (CPB)	115
6.1.1. Análise mecânica	115
6.1.1.1. Impacto	115
6.1.1.2. Flexão em 3 pontos	131
6.1.2. Propriedades físicas	139
6.1.3. Análise microestrutural	140
6.1.4. Propriedades térmicas	144
6.1.4.1. Condutividade térmica	144

6.1.4.2. Análise termogravimetrica (TGA)	145
6.2. Compósito cimentício reforçado por polpa de sisal (CPS)	147
6.2.1. Análise mecânica	147
6.2.2. Análise microestrutural	152
6.2.3. Propriedades térmicas	153
6.2.3.1. Análise termogravimetrica (TGA)	153
6.3. Compósito cimentício reforçado por polpa de eucalipto (CPE)	155
6.3.1. Análise mecânica	155
6.3.2. Análise microestrutural	159
6.3.3. Propriedades térmicas	160
6.3.3.1. Análise termogravimetrica (TGA)	160
6.4. Compósito cimentício reforçado por fibras curtas de sisal (CPFS)	162
6.4.1. Análise mecânica	162
6.4.2. Análise microestrutural	164
6.5. Compósito cimentício reforçado por wollastonita (CPW)	166
6.5.1. Análise mecânica	166
6.5.2. Análise microestrutural	168
6.6. Compósito cimentício híbrido reforçado por bambu e wollastonita	
(CPBW)	170
6.6.1. Análise mecânica	170
6.6.1.1. Impacto Charpy	170
6.6.1.2. Flexão em 3 pontos	170
6.6.2. Análise microestrutural	174
6.7. Comparação dos resultados de módulo de ruptura dos compósito	S
cimentícios com normas internacionais	176
6.8. Laminado de bambu	177
6.8.1. Análise mecânica	177
6.8.1.1. Impacto balístico	179
6.8.2. Análise microscópica	182
6.8.3. Propriedades térmicas	184
6.8.3.1. Análise termogravimétrica	184
7 Conclusão	185

8 SUGESTÃO PARA TRABALHOS FUTUROS	190
REFERÊNCIA BIBLIOGRÁFICA	191
ANEXO A - LEI DE CONTATO DE HERTZ	210
ANEXO B - CURVAS CARGA X DEFLEXÃO E TENSÃO DE FLEXÃO	Х
DEFLEXÃO	217
ANEXO C - DETERMINAÇÃO DA TENSÃO DE ADESÃO INTERFAC	IAL E
COMPRIMENTO CRÍTICO	228

Lista de figuras

Figura 2.1 – Aspecto macroscópico da polpa de bambu.	33
Figura 2.2 – Estrutura de uma fibra de madeira.	34
Figura 2.3 – O sisal e sua fibra.	35
Figura 2.4 – Localização das fibras mecânicas e arco e seção transvers	sal
da fibra arco.	36
Figura 2.5 – Fibra de wollastonita fraturada em uma matriz cimentícia	
observada através do MEV.	37
Figura 2.6 – Estrutura da fruta do Coco.	41
Figura 2.7 – Produção anual de coco.	41
Figura 2.8- Fibra de comprimento L orientada aleatoriamente.	47
Figura 2.9 – Crisolita em seu estado bruto e vista ao microscópio.	56
Figura 3.1 – Distribuição das fibras no bambu.	64
Figura 3.2 – Laje reforçada por bambu.	66
Figura 3.3 – Pilar reforçado por bambu.	67
Figura 3.4 - Aspectos do bambu e aço após longo período de exposição	o.68
Figura 3.5 – Superfície de feixes vasculares em 2 e 3 dimensões.	69
Figura 3.6 – Parede da célula de aproximadamente 0,5 μ m e algumas	
propriedades de escala nano.	69
Figura 4.1 – Diferença entre ensaio de impacto Charpy e Izod.	72
Figura 4.2 – Configuração do ensaio de impacto Charpy.	73
Figura 4.3 – Equipamento para ensaio de impacto Izod.	74
Figura 4.4 – Detalhe do posicionamento do corpo-de-prova no ensaio de	е
impacto Izod.	74
Figura 4.5 – Equipamento para ensaio de queda de peso instrumentado	0.75
Figura 4.6 – Esquema de teste da Barra Hopkinson.	76
Figura 4.7 – Teste utilizando a Barra Hopkinson.	77
Figura 4.8 – Aparato utilizado em um teste de impacto balístico.	78
Figura 4.9 – Detalhe do captador de força do martelo utilizado no ensaio	
de impacto Charpy.	86
Figura 4.10 – Modelo dinâmico para o teste de impacto Charpy.	87

Figura 5.1 – Dispersão da polpa.	91
Figura 5.2 – Forma de Acrílico para confecção dos corpos-de-prova.	92
Figura 5.3 – Regularização da superfície do compósito com auxílio de	
soquete metálico.	92
Figura 5.4 – Detalhe da compressão dos corpos-de-prova.	93
Figura 5.5 – Mistura manual da argamassa com fibra de sisal.	95
Figura 5.6 – Forma preenchida por argamassa reforçada por fibras de	
sisal.	96
Figura 5.7 – Compósitos de sisal em cura na água.	96
Figura 5.8 – Processo manual de fabricação de lâminas de bambu.	98
Figura 5.9 – Método de fabricação de laminas através do processo	
manual-mecânico 1.	99
Figura 5.10 – Processo de fabricação de lâminas de bambu através do)
processo manual – mecânico 2.	100
Figura 5.12 – Aparato do ensaio de flexão.	103
Figura 5.13 – Detalhes do ensaio de impacto balístico	105
Figura 5.14 – Detalhe das condições de contorno dos corpos-de-prova	106
Figura 5.16 – Aparato para medição da condutividade térmica.	109
Figura 5.17 – STA 1500 da Polymer Laboratories.	111
Figura 5.18- Microscópio eletrônico de varredura	112
Figura 5.19 – Evaporadora Balzers SCD 050.	112
Figura 6.1 – Compósito CPB14 fraturado após ensaio de impacto.	116
Figura 6.2 – Determinação da equação do módulo de ruptura para o	
CPB8T.	117
Figura 6.3 - Determinação da equação do módulo de ruptura para o	
CPB8C.	118
Figura 6.4 - Determinação da equação do módulo de ruptura para o	
CPB14T.	119
Figura 6.5 - Determinação da equação do módulo de ruptura para o	
CPB14C.	119
Figura 6.6 - Determinação da equação do módulo de ruptura para o	
CPB8T.	120
Figura 6.7 - Determinação da equação do módulo de ruptura para o	

CPB8C.	121
Figura 6.8 - Determinação da equação do módulo de ruptura para o	101
	121
Figura 6.9 - Determinação da equação do modulo de ruptura para o	
CPB14C	122
Figura 6.10 - Determinação da equação do módulo de ruptura para o CPB8T.	123
Figura 6.11 - Determinação da equação do módulo de ruptura para o CPB8C.	123
Figura 6.12 - Determinação da equação do módulo de ruptura para o CPB14T.	124
Figura 6.13 - Determinação da equação do módulo de ruptura para o	
CPB14C.	125
Figura 6.14 - Gráfico forca x tempo do ensaio de impacto Charpy para	0
CPB14.	130
Figura 6.15 – Gráfico força x tempo do ensaio de impacto Charpy para	1
CPB8.	130
Figura 6.16 – Comportamento dos compósitos CPBA.	131
Figura 6.17 Influência do comprimento, tensão de adesão interfacial,	fator
de eficiência, diâmetro e fração volumétrica da fibra na tenacidade.	138
Figura 6.18 – Compósito CPB8 fraturado após ensaio de impacto.	141
Figura 6.19 – Compósito fraturado no qual pode ser visto uma fibra	
fraturada e sua ampliação.	141
Figura 6.20 – Compósito CPB14 fraturado por ensaio de impacto.	142
Figura 6.21 – CompósitoCPB8 fraturado por ensaio de flexão em 3	
pontos.	142
Figura 6.22 - Superfície de fratura plana de um corpo de prova sem	
reforço.	143
Figura 6.23 – Aglomerações de fibras em compósitos CPB8.	143
Figura 6.24 – Termogravimetria e termogravimetria diferencial da pol	pa
de bambu.	145
Figura 6.25 – Formação de grumos em compósito CPS8.	148
Figura 6.26 – Histograma do comprimento da fibra de sisal.	149

Figura 6.27 – Compósitos CPS8 fraturados por ensaio de impacto.	152
Figura 6.28 - Aglomeração de fibras em compósito CPS14.	152
Figura 6.29 – Termogravimetria e termogravimetria diferencial para p	olpa
de sisal.	153
Figura 6.30 – Aglomeração das fibras no compósito CPE14.	156
Figura 6.31 - Compósitos CPE14 e CPE8 fraturados por ensaio de	
impacto.	159
Figura 6.32 – Compósito CPE8 fraturado por ensaio de flexão.	160
Figura 6.33 – Termogravimetria e termogravimetria diferencial para	
polpa de eucalipto.	160
Figura 6.34 – Compósitos CPFS fraturados por ensaio de impacto.	164
Figura 6.35 – Compósito CPFS fraturado por ensaio de flexão.	165
Figura 6.36 – Fibras fraturadas no compósito CPW por ensaio de impa	acto.
	168
Figura 6.37 – Fibras fraturadas fora do plano no compósito CPW,	
submetido a ensaio de flexão.	169
Figura 6.38 – Compósitos CPBW14 fraturado por ensaio de impacto.	174
Figura 6.39 – Adesão interfacial da fibra de wollastonita.	174
Figura 6.40 – Compósitos CPBW8 fraturados por ensaio de flexão.	175
Figura 6.41 – Fibras de wollastonita fraturadas fora do plano por ensai	0
de flexão.	175
Figura 6.42 – Diagrama carga x tempo do ensaio de impacto Charpy.	178
Figura 6.43 – BLCA após ser perfurado.	181
Figura 6.44-BL fraturado por ensaio de flexão e por ensaio de impacto	.182
Figura 6.45 – Zona comprimida no ensaio de flexão e detalhe.	182
Figura 6.46 – BL fraturado por ensaio de impacto.	183
Figura 6.47 – Termogravimetria e termogravimetria diferencial do ban	ıbu
em seu estado natural.	184
Figura A.1 – Coordenadas das duas superfícies inicialmente no ponto	0.
	210
Figura B.1 – carga x deflexão e tensão de flexão x deflexão do CP0.	217
Figura B.2 – Carga x deflexão e tensão de flexão x deflexão do CPB80	С.

217

218 Figura B.4 – Carga x deflexão e tensão de flexão x deflexão do CPB14C. 218 Figura B.5 – Carga x deflexão e tensão de flexão x deflexão do CPB14T. 218 Figura B.6 – Carga x deflexão e tensão de flexão x deflexão do CPB8C. 219 Figura B.7 – Carga x deflexão e tensão de flexão x deflexão do CPB8T 219 Figura B.8 - Carga x deflexão e tensão de flexão x deflexão do CPB14C. 219 Figura B.9 – Carga x deflexão e tensão de flexão x deflexão do CPB14T. 220 Figura B.10 – Carga x deflexão e tensão de flexão x deflexão do CPB8C. 220 Figura B.11 – Carga x deflexão e tensão de flexão x deflexão do CPB8T. 220 Figura B.12 – Carga x deflexão e tensão de flexão x deflexão do CPB14. С 221 Figura B.13 – Carga x deflexão e tensão de flexão x deflexão do CPB14T. 221 Figura B.14 – Carga x deflexão e tensão de flexão x deflexão do CPBA8. 221 Figura B.15 – Carga x deflexão e tensão de flexão x deflexão do CPBA. 14. 222 Figura B.16 – Carga x deflexão e tensão de flexão do CPE8C. 222 222 Figura B.17 – Carga x deflexão e tensão de flexão do CPE8T. Figura B.18 – Carga x deflexão e tensão de flexão do CPE14C. 223 223 Figura B.19 – Carga x deflexão e tensão de flexão do CPE14T. Figura B.20 – Carga x deflexão e tensão de flexão do CPS8C. 223 224 Figura B.21 – Carga x deflexão e tensão de flexão do CPS8T. 224 Figura B.22 – Carga x deflexão e tensão de flexão do CPS14C.

Figura B.3 - Carga x deflexão e tensão de flexão x deflexão do CPB8T

Figura B.23 – Carga x deflexão e tensão de flexão do CPS14T.	224
Figura B.24 – Carga x deflexão e tensão de flexão do CPARG.	225
Figura B.25 – Carga x deflexão e tensão de flexão do CPFS.	225
Figura B.26 – Carga x deflexão e tensão de flexão do CPW.	225
Figura B.27 – Carga x deflexão e tensão de flexão do CPBW8C.	226
Figura B.28 – Carga x deflexão e tensão de flexão do CPBW8T.	226
Figura B.29 – Carga x deflexão e tensão de flexão do CPBW14C.	226
Figura B.30 – Carga x deflexão e tensão de flexão do CPBW14T.	227
Figura B.31 – Carga x deflexão e tensão de flexão do BL.	227
Figura B.32 – Carga x deflexão e tensão de flexão do BLC.	227
Figura C.1 – Determinação da equação do módulo de ruptura para o	
CPS8C.	228
Figura C.2 – Determinação da equação do módulo de ruptura para o	
CPS8C.	229
Figura C.3 – Determinação da equação do módulo de ruptura para o	
CPS14T.	229
Figura C.4 – Determinação da equação do módulo de ruptura para o	
CPS14C.	230
Figura C.5 – Determinação da equação do módulo de ruptura para o	
CPE8T.	231
Figura C.6 – Determinação da equação do módulo de ruptura para o	
CPE8C.	231
Figura C.7 – Determinação da equação do módulo de ruptura para o	
CPE14T.	232
Figura C.8 – Determinação da equação do módulo de ruptura para o	
CPE14C.	232
Figura C.9 – Determinação da equação do módulo de ruptura para o	
CPFS.	233
Figura C.10 – Determinação da equação do módulo de ruptura para o	
CPW.	234

Lista de tabelas

Tabela 2.1 - Propriedades mecânicas e físicas da polpa e fibra de bambu.	33
Tabela 2.2 – Propriedades mecânicas e físicas da fibra de sisal.	36
Tabela 2.3 - Propriedades físicas e mecânicas e composição química	da
wollastonita NYAD 325.	38
Tabela 2.4 – Propriedades mecânicas e físicas da fibra de eucalipto.	39
Tabela 2.5 – Propriedades mecânicas e físicas da fibra de juta.	40
Tabela 2.6 – Propriedades mecânicas e físicas da fibra de coco.	42
Tabela 2.7 – Propriedades mecânicas e físicas da fibra de banana.	43
Tabela 2.8 – Valores dos fatores de eficiência η_1 dados por Cox e Krenchel.	46
Tabela 2.9 – Propriedades mecânicas e físicas do amianto.	57
Tabela 6.1 - Resultados do ensaio de impacto Charpy para CP0, CPB e CP	BS.
	115
Tabela 6.2 – Resultados de comprimento crítico e tensão interfacial do CPB.	126
Tabela 6.3 – Resultados de teste de impacto Charpy para CPBA.	130
Tabela 6.4 - Resultados de teste de flexão em 3 pontos para CPO, CPB e CPI	BA.
	132
Tabela 6.5 – Resultado de teste de flexão em 3 pontos para CPB.	134
Tabela - 6.6 - Resultados para a tenacidade (R) experimentais e analíticas	do do
$CPB (kJ/m^2)$	137
Tabela 6.7 – Índices físicos para CP0, CPB e CPBA.	139
Tabela 6.8 – Valores de condutividade térmica para diferentes materiais.	144
Tabela 6.9 – Resultados de teste de impacto Charpy para CPS.	147
Tabela 6.10 - Resultados de tensão de adesão interfacial e comprimento crítico	o do
CPS.	148
Tabela 6.11 – Resultados de teste de flexão em 3 pontos para CPS.	149
Tabela 6.12 - Resultados para a tenacidade (R) experimentais e analíticas do C	CPB
(kJ/m^2)	150
Tabela 6.13– Índices físicos do CPS.	151
Tabela 6.14 – Composição química do sisal.	153

Tabela 6.15 – Resultados de teste de impacto Charpy para CPE.	155
Tabela 6.16 - Resultados da tensão de adesão interfacial e comprimento crític	co do
CPE.	156
Tabela 6.17 – Resultados de teste de flexão em 3 pontos para o compósito	CPE.
	157
Tabela 6.18 - Resultados para a tenacidade (R) experimentais e analíticas do	CPB
(kJ/m^2)	158
Tabela 6.19 – Índices físicos para CPE.	159
Tabela 6.20- Composição química do eucalipto.	161
Tabela 6.21 – Resultados de teste de impacto Charpy para CPARG e CPFS.	162
Tabela 6.22 – Resultados de teste de flexão em 3 pontos para CPARG e CPFS	5.163
Tabela 6.23 - Resultados para a tenacidade (R) experimentais e analítica	ıs do
CPFS (kJ/m^2) .	163
Tabela 6.24 – Índices físicos para CPARG e CPFS.	164
Tabela 6.25 – Resultados de teste de impacto Charpy para CPW.	166
Tabela 6.26 – Resultados de teste de flexão em 3 pontos para CPW.	166
Tabela 6.27 - Resultados para a tenacidade (R) experimentais e analíticas do	CPW
(kJ/m^2) .	167
Tabela 6.28 – Índices físicos do CPW.	168
Tabela 6.29 – Resultados de teste de impacto Charpy para CPBW.	170
Tabela 6.30 – Resultados de teste de flexão em 3 pontos para CPBW.	171
Tabela 6.31 - Resultados para a tenacidade (R) experimentais e analítica	ıs do
CPBW (kJ/m^2) .	172
Tabela 6.32 – Índices físicos do CPBW.	173
Tabela 6.33 – Resultados dos testes de impacto Charpy e flexão em 3 pontos.	177
Tabela 6.34 – Resultados do ensaio de impacto balístico para o BLCA.	180
Tabela 6.35 – Resultados de micro dureza Vickers.	181

Lista de quadros

Quadro 2.1 - Principais diferenças entre amianto e fibras vegetais.	58
Quadro 2.2 - Sumários de riscos quantitativos relativo à exposição ao	
asbesto para diferentes níveis de exposição.	62
Quadro 4.1 - Artigos com descrição de aparato de impacto.	78
Quadro 4.2 - Normas de testes de Impacto.	80
Quadro 5.1 - Propriedades mecânicas do alumínio liga 5052 H34.	94
Quadro 5.2 - Propriedades mecânicas do Compound Adesivo Gel.	94

Lista de Símbolos

Letras Romanas

- E Módulo de elasticidade longitudinal
- \overline{E} Módulo de elasticidade longitudinal médio
- E_f Módulo de elasticidade longitudinal da fibra
- G Módulo de cisalhamento
- \overline{G} Módulo de cisalhamento médio
- MEF Módulo de elasticidade de flexão
 - V_f Fração volumétrica das fibras
- V_m Fração volumétrica da matriz
- L_c Comprimento crítico da fibra
- L Comprimento
- d Diâmetro
- V₀ Fração de vazios
- R Tenacidade
- R_m Tenacidade da matriz
- R_{if} Tenacidade referente ainterface fibra-matriz
- R_s Tenacidade devida a criação de novas superfícies resultante de fraturas.
- R_{re} Tenacidade devida à redistribuição das tensões.
- R_{po} Tenacidade devida ao arrancamento de fibras.
- N Número de fibras
- V Velocidade
- m Massa
- HV Dureza Vickers

Letras Gregas

- *v* Coeficiente de Poisson
- \overline{v} Coeficiente de Poisson médio
- η_1 Coeficiente de rendimento referente à orientação das fibras
- η_2 Coeficiente de rendimento referente ao tamanho das fibras
- σ_{ct} Resistência à tração do compósito
- σ_{cf} Módulo de ruptura do compósito

Resistência à tração da fibra
Resistência à tração da fibra.
Resistência à tração da matriz.
Módulo de ruptura da matriz
Módulo de ruptura da matriz sem vazios
Fator de eficiência da fibra
Tensão de aderência interfacial fibra-matriz
Tensão de cisalhamento interfacial
Relações da resistência à flexão do compósito e da matriz
Designações
Matriz cimentícia sem reforço
Compósito cimentício reforçado por polpa de bambu refinada.
Compósito sanduíche CPB – alumínio.
CPB – saturado.
Compósito cimentício reforçado por polpa de sisal.
Compósito de argamassa reforçado por fibras curtas de sisal.
Matriz de argamassa sem reforço.
Compósito cimentício reforçado por polpa de eucalipto.
Compósito cimentício reforçado por wollastonita.
Compósito cimentício reforçado por wollastonita e bambu.
Bambu laminado.
Bambu laminado colado.
Sanduíche BLC – alumínio.
O número 8 (oito) após as designações é referente a proporção de
fibras (8%) em relação a massa de cimento.
O número 14 (quatorze) após as designações é referente a proporção
de fibras (14%) em relação a massa de cimento.
A letra "C" após as designações significa que o compósito foi
ensaiado com o lado de maior concentração de fibras comprimido.
A letra "T" após as designações significa que o compósito foi
ensaiado com o lado de maior concentração de fibras tracionado.